Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.354
Filter
1.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38457263

ABSTRACT

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Subject(s)
Alloys , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Metal Nanoparticles , Silver , Surface Properties , Thiazoles , Titanium , Humans , Fibroblasts/drug effects , Titanium/toxicity , Titanium/chemistry , Gingiva/cytology , Gingiva/drug effects , Silver/chemistry , Silver/toxicity , Cell Proliferation/drug effects , Metal Nanoparticles/toxicity , Cell Survival/drug effects , Cells, Cultured , Alloys/toxicity , Materials Testing , Dental Alloys/chemistry , Dental Alloys/toxicity , Microscopy, Electron, Scanning , Coloring Agents , Biocompatible Materials/chemistry , Tetrazolium Salts
2.
J Dent ; 144: 104936, 2024 May.
Article in English | MEDLINE | ID: mdl-38492806

ABSTRACT

OBJECTIVE: To evaluate the three-dimensional (3D) stability and accuracy of additively manufactured surgical templates fabricated using two different 3D printers and materials. MATERIALS AND METHODS: Forty surgical templates were designed and printed using two different 3D printers: the resin group (n = 20) used a digital light processing (DLP) 3D printer with photopolymer resin, and the metal group (n = 20) employed a selective laser melting (SLM) 3D printer with titanium alloy. All surgical templates were scanned immediately after production and re-digitalized after one month of storage. Similarly, the implant simulations were performed twice. Three-dimensional congruency between the original design and the manufactured surgical templates was quantified using the root mean square (RMS), and the definitive and planned implant positions were determined and compared. RESULTS: At the postproduction stage, the metal templates exhibited higher accuracy than the resin templates (p < 0.001), and these differences persisted after one month of storage (p < 0.001). The resin templates demonstrated a significant decrease in three-dimensional stability after one month of storage (p < 0.001), whereas the metal templates were not affected (p > 0.05). No significant differences in implant accuracy were found between the two groups. However, the resin templates showed a significant increase in apical and angular deviations after one month of storage (p < 0.001), whereas the metal templates were not affected (p > 0.05). CONCLUSION: Printed metal templates showed higher fabrication accuracy than printed resin templates. The three-dimensional stability and implant accuracy of printed metal templates remained unaffected by one month of storage. CLINICAL SIGNIFICANCE: With superior three-dimensional stability and acceptable implant accuracy, printed metal templates can be considered a viable alternative technique for guided surgery.


Subject(s)
Printing, Three-Dimensional , Titanium , Humans , Titanium/chemistry , Computer-Aided Design , Lasers , Dental Implants , Alloys/chemistry , Imaging, Three-Dimensional/methods , Dental Implantation, Endosseous/instrumentation , Dental Implantation, Endosseous/methods , Dental Materials/chemistry , Dental Alloys/chemistry , Materials Testing
3.
J Oral Sci ; 66(1): 60-65, 2024.
Article in English | MEDLINE | ID: mdl-38233156

ABSTRACT

PURPOSE: To investigate the surface topography and nickel content of nickel-titanium (NiTi) archwires exposed to either routine oral hygiene or a prophylactic regimen with casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) during orthodontic treatment. METHODS: This in vivo study involved 40 orthodontic patients with fixed appliances, who were randomly assigned to either a routine oral hygiene group or a CPP-ACP supplementary regimen group. Twenty new NiTi archwires served as controls. All archwires underwent scanning electron microscopy and energy-dispersive spectroscopy to evaluate their surface topography and elemental composition. The nickel content was quantified as a percentage of total weight and the Ni/Ti ratio, and statistical comparisons were made using pairwise tests. RESULTS: Wires exposed to fluoride toothpaste showed signs of pitting corrosion, deep grooves, and corrosion debris. In contrast, wires exposed to supplementary CPP-ACP exhibited smooth surface areas interspersed with microdefects and deposits. Statistically significant differences in nickel content were found between the new and retrieved archwires, as well as between wires exposed to routine oral hygiene and CPP-ACP (P < 0.001). The archwires exposed to CPP-ACP had the lowest nickel content (P < 0.001). CONCLUSION: The use of CPP-ACP holds promise for application as a safe anticariogenic agent with possible protective properties during orthodontic treatment.


Subject(s)
Calcium Phosphates , Caseins , Phosphopeptides , Humans , Nickel/chemistry , Titanium/chemistry , Dental Alloys/chemistry , Orthodontic Appliances, Fixed , Surface Properties , Materials Testing
4.
BMC Oral Health ; 23(1): 825, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37904159

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the phase composition, phase transformation temperatures, bending property, and cyclic fatigue resistance of different heat-treated nickel-titanium (NiTi) rotary instruments with the same tip diameter and taper at room (RT; 25 ± 1 °C) and body (BT; 37 ± 1 °C) temperatures. METHODS: Five heat-treated NiTi rotary instruments, HyFlex EDM (EDM), HyFlex CM (CM), Vortex Blue (VB), RE file CT (RE) and JIZAI, and a non-heat-treated NiTi rotary instrument (Mtwo) with a size 40, 0.04 taper were investigated. Temperature-dependent phase transformation was examined with differential scanning calorimetry (DSC). The bending loads of the instruments at RT and BT were evaluated using a cantilever-bending test. Cyclic fatigue resistance at RT and BT was measured using a dynamic test, during which the instruments were rotated in combination with a 2-mm back-and-forth motion in an artificial curved canal, and the number of cycles to failure (NCF) was determined. The results were analyzed using two-way repeated measures analysis of variance, a simple main effect test, and the Bonferroni test (α = 0.05). RESULTS: DSC results indicated that EDM and Mtwo were primarily composed of martensite/R-phase and austenite, respectively, while the other heat-treated instruments were composed of a mix of martensite/R-phase and austenite at the tested temperatures. Regardless of the temperature setting, the bending loads of heat-treated instruments were significantly lower than those of Mtwo (p < 0.05). EDM showed the lowest bending loads and highest NCF at both temperatures (p < 0.05). CM, VB, and JIZAI showed significantly higher bending loads at BT than at RT (p < 0.05). The NCF of all the heat-treated instruments, except VB, was lower at BT than at RT (p < 0.05). At BT, the NCF of CM, VB, RE, and JIZAI were not significantly higher than that of Mtwo (p > 0.05). CONCLUSIONS: Heat-treated NiTi instruments exhibited lower bending loads and higher NCF values than Mtwo. However, this tendency was less pronounced at BT than at RT, especially in the NCF values of instruments with a mixture of martensite/R-phase and austenite phases at the tested temperatures.


Subject(s)
Hot Temperature , Titanium , Humans , Titanium/chemistry , Nickel/chemistry , Body Temperature , Equipment Failure , Dental Alloys/chemistry , Materials Testing , Dental Instruments , Root Canal Preparation , Stress, Mechanical
5.
BMC Oral Health ; 23(1): 703, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777753

ABSTRACT

BACKGROUND: To analyse the changes in surface and nickel ion release characteristics of fractured root canal shaping instruments in a simulated body fluid environment. METHODS: A total of 54 new instruments were studied. The instrument groups consisted of five different NiTi alloys and a stainless-steel alloy. To standardize instrument fracture, a torsional type of failure was created on each instrument. The fractured specimens of each instrument group were randomly divided into three static immersion subgroups of 1 h, 7-day, and 30-day (n = 3). Simulated body fluid (SBF) was prepared to mimic human blood plasma by Kokubo&Takadama protocol for ex situ static immersions at 37ºC. The surfaces were examined via scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. To determine the quantitative ion release, the retrieved SBFs were analyzed using inductively coupled plasma mass spectrometry. Two-way ANOVA and Tukey post hoc tests sought the statistical significance of the nickel ion values(p < 0.05). RESULTS: In 1 h of immersion, the newly formed structures, exhibiting mostly oxygen signals, were widespread and evident on NiTi surfaces. In contrast, fewer structures were detected on the SS surface in that subgroup. In 7 days of immersion, a tendency for a decrease in the density of the new structures was revealed in NiTi groups. The oxygen signals on NiTi group surfaces significantly increased, contrary to their decrease in SS. Signals of sodium, chlorine, and calcium were detected, indicating salt precipitates in groups. In 30 days of immersion, salt precipitates continued to form. The Ni-ion release values in all instrument groups presented significant differences in comparison to the SBF control in all immersion periods(p < 0.001). No significant differences were observed in immersion time periods or instrument groups(p > 0.05). CONCLUSIONS: Within the limitations of the presented study, it was concluded that the fractured SS and NiTi root canal instruments release Ni ions in contact with body fluid. However, the Ni ion release values determined during the observation periods are lower than the critical toxic or allergic thresholds defined for the human body. This was due to the ionic dissolution cycle reaching a stable state from 1-hour to 30-day exposure to the body fluid of fractured instruments.


Subject(s)
Nickel , Root Canal Therapy , Humans , Nickel/chemistry , Alloys , Dental Alloys/chemistry , Titanium/chemistry , Ions , Root Canal Preparation , Surface Properties , Materials Testing , Equipment Design
6.
J World Fed Orthod ; 12(6): 260-268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37709635

ABSTRACT

BACKGROUND: To determine the effect of silver and silver chitosan nanocoatings on monocrystalline ceramic, polycrystalline ceramic, and metallic brackets regarding friction, roughness, and antibacterial effect against Streptococcus mutans. METHODS: A total of 99 upper right premolar brackets with a 0.022 × 0.025 -inch slot were divided into three groups, each 33 according to coating material; the non-coated group, silver nanoparticles (AgNPs), and silver chitosan nanoparticles (Ag-CsNPs) groups. Each group was equally subdivided into the following three subgroups regarding bracket materials: monocrystalline ceramic, polycrystalline ceramic, and metallic brackets. A universal testing machine determined static friction on a custom-made acrylic jig. Then a profilometer machine was used to collect roughness data, and finally, the anti-cariogenic effect was measured with the disc diffusion technique's "minimum zone of inhibition" against Streptococcus mutans. Two-way ANOVA was used to compare data between groups and subgroups, followed by the Bonferroni test for multiple pair-wise comparisons. RESULTS: The nanocoating effect on ceramic brackets' static friction was non-significant. The AgNPs and Ag-CsNPs coated metallic group revealed a significant increase in static friction-a significant effect of the nanocoating in the surface roughness of monocrystalline and polycrystalline ceramic brackets. A significant favorable effect of AgNPs and Ag-CsNPs against Streptococcus mutans was observed. CONCLUSIONS: AgNPs and Ag-CsNPs coats are unsuitable for decreasing friction in metallic brackets or improving roughness in polycrystalline ceramic brackets. Nano coating can improve roughness in monocrystalline ceramic brackets. Coating brackets with AgNPs and Ag-CsNPs has a tremendous antibacterial effect on Streptococcus mutans, a substantial factor in the incidence of dental caries.


Subject(s)
Chitosan , Dental Caries , Metal Nanoparticles , Orthodontic Brackets , Humans , Friction , Silver/pharmacology , Dental Alloys/chemistry , Chitosan/pharmacology , Orthodontic Wires , Surface Properties , Streptococcus mutans , Anti-Bacterial Agents/pharmacology
7.
Dent Mater J ; 42(5): 732-738, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37612059

ABSTRACT

The aim of this study was to investigate the effect of repeated casting and heat treatment on the corrosion resistance of a commercial Ag-Pd-Cu-Au alloy as evaluated by electrochemical techniques. After repeated casting, the fifth cast of the Ag-Pd-Cu-Au alloy exhibited dramatic degradation of properties, although upon heat treatment, this corrosion resistance did improve. Despite the improvement by heat treatment, after five castings, this alloy may not have satisfactory hardness for clinical use. These results of this study demonstrate that, up to the fourth cast and heat treatment, the Ag-Pd-Cu-Au alloy has acceptable corrosion resistance and hardness.


Subject(s)
Corrosion , Dental Alloys , Dental Casting Technique , Hot Temperature , Materials Testing , Alloys/chemistry , Copper/chemistry , Dental Alloys/chemistry , Gold Alloys/chemistry , Materials Testing/methods , Palladium/chemistry , Silver/chemistry , Dental Casting Technique/adverse effects , Dental Casting Technique/standards
8.
Dent Mater J ; 42(4): 469-477, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37271541

ABSTRACT

Adhesion of the most common dental biofilm bacteria to alloys used in orthodontics in relation to surface characteristics was analyzed. Streptococcus mutans (S. mutans), Streptococcus oralis (S. oralis), Veillonella parvula (V. parvula), and Aggregatibacter actinomycetemcomitans (A. actynomicetemcomitans) were incubated for 4 h with nickel-titanium (NiTi) and stainless-steel (SS) wires. The surface roughness and free energy of the alloys, as well as the hydrophobicity of the alloys and bacteria, were assessed. NiTi had higher surface free energy and rougher (p<0.001) and more hydrophilic surfaces than SS (p<0.001). The hydrophobic properties of the bacteria decreased in the following order: V. parvula>S. oralis>S. mutans>A. actynomicetemcomitans. Bacterial adhesion generally increased over time, though this pattern was influenced by the type of alloy and the bacteria present (p<0.001). In a multiple linear regression, the principal predictor of adhesion was bacterial hydrophobicity (p<0.001), followed by time (p<0.001); alloy surface characteristics had a low influence.


Subject(s)
Dental Alloys , Orthodontic Wires , Dental Alloys/chemistry , Surface Properties , Orthodontic Appliances , Alloys , Streptococcus mutans , Titanium/chemistry , Stainless Steel/chemistry
9.
J Oral Sci ; 65(3): 153-157, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37258232

ABSTRACT

PURPOSE: This study aimed at evaluating the effects of surface treatments with tetrabutylammonium dihydrogen trifluoride (TDTF) on the bond strengths of indirect resin composites with titanium-aluminum-vanadium (Ti-6Al-4V) and cobalt-chromium (Co-Cr) alloys. METHODS: Disk-shaped Ti-6Al-4V and Co-Cr alloy specimens were air-abraded with alumina, treated with an etchant (MEP) containing TDTF for 10 s (MEP10) or 30 s (MEP30), and rinsed with water. Subsequently, a primer containing 6-methacryloyloxyhexyl phosphonoacetate was applied to the surfaces, and the specimens were veneered with a light-curing indirect resin composite. Specimens without MEP were prepared as controls (no-MEP). Shear bond strengths were determined before or after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass test (α = 0.05, n = 10). RESULTS: No significant difference was found in the bond strengths between the Ti-6Al-4V and Co-Cr alloys. In each metal alloy, the MEP10 and MEP30 specimens exhibited higher bond strengths than the no-MEP controls after 100,000 thermocycles. Scanning electron microscopy observations revealed that submicron-pits and crevices were formed on both the metal alloys upon applying the MEP etchant. CONCLUSION: Surface treatments with TDTF following air abrasion are useful for improving bonding durability while veneering resin composites on Ti-6Al-4V or Co-Cr alloy frameworks.


Subject(s)
Chromium Alloys , Titanium , Chromium Alloys/chemistry , Titanium/chemistry , Dental Alloys/chemistry , Aluminum , Vanadium , Air Abrasion, Dental , Surface Properties , Composite Resins , Materials Testing
10.
Int Endod J ; 56(6): 775-785, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36942476

ABSTRACT

AIM: This study aimed to compare three rotary instruments produced by the EDM process with the heat-treated ProTaper Gold system regarding design, metallurgy, mechanical properties and shaping ability. METHODOLOGY: HyFlex EDM (25/~), Neoniti (25/.06), EDMax (25/.06) and ProTaper Gold (25/.08v) instruments (n = 58 per group) were compared regarding design, metallurgy and mechanical performance. Unprepared canal areas were calculated for each system after preparation of mesiobuccal, mesiolingual and distal canals of mandibular molars (15 canals per group) using micro-CT technology. Statistical analyses were performed using One-way anova post-hoc Tukey and Kruskal-Wallis post-hoc Dunn's tests (α = 5%). RESULTS: All instruments had asymmetrical blades, no radial lands, no major defects and almost equiatomic nickel/titanium ratios, but different cross-section designs, tip geometries and surface appearances. Although instruments had distinct transformation temperature curves, they showed crystallographic martensitic arrangement at 21°C and mixed austenite plus R-phase at body temperature. Neoniti and HyFlex EDM showed similar results in all mechanical tests (p > .05), while EDMax and ProTaper Gold had similar time to fracture (p = .841), maximum bending load (p = .729), and cutting ability (p = .985). ProTaper Gold showed the highest torque to failure (p < .001) and HyFlex EDM had the lowest buckling resistance (p < .001). Mean percentages of unprepared canal areas ranged from 20.4% to 25.7% in the mesial canals, and from 20.8% to 26.2% in the distal canal, with no statistical differences among systems (p > .05). CONCLUSIONS: Instruments' geometry and phase transformation temperatures influenced the results of the mechanical tests, but not their shaping ability.


Subject(s)
Root Canal Preparation , Humans , Dental Alloys/chemistry , Dental Instruments , Equipment Design , Materials Testing , Temperature , Titanium/chemistry , Torque
11.
Dent Mater ; 38(8): 1395-1403, 2022 08.
Article in English | MEDLINE | ID: mdl-35781168

ABSTRACT

OBJECTIVE: Titanium (Ti) is considered bioinert and is still regarded as the "gold standard" material for dental implants. However, even 'commercial pure' Ti will contain minor fractions of elemental impurities. Evidence demonstrating the release of Ti ions and particles from 'passive' implant surfaces is increasing and has been attributed to biocorrosion processes which may provoke immunological reactions. However, Ti observed in peri-implant tissues has been shown to be co-located with elements considered impurities in biomedical alloys. Accordingly, this study aimed to quantify the composition of impurities in commercial Ti dental implants. METHODS: Fifteen commercial titanium dental implant systems were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). RESULTS: The elemental composition of implants manufactured from commercially pure grades of Ti, Ti-6Al-4V, and the TiZr alloy (Roxolid) conformed to the respective ISO/ASTM standards or manufacturers´ data (TiZr/Roxolid). However, all implants investigated included exogenous metal contaminants including Ni, Cr, Sb, and Nb to a variable extent. Other contaminants detected in a fraction of implants included As and the radionuclides U-238 and Th-232. SIGNIFICANCE: Although all Ti implant studies conformed with their standard compositions, potentially allergenic, noxious metals and even radionuclides were detected. Since there are differences in the degree of contamination between the implant systems, a certain impurity fraction seems technically avoidable. The clinical relevance of these findings must be further investigated, and an adaptation of industry standards should be discussed.


Subject(s)
Dental Implants , Uranium , Alloys , Dental Alloys/chemistry , Spectrum Analysis , Surface Properties , Titanium/chemistry
12.
Dent Mater ; 38(7): 1162-1172, 2022 07.
Article in English | MEDLINE | ID: mdl-35690483

ABSTRACT

OBJECTIVE: To characterize the effect of elemental composition and manufacturing process on the electrochemical properties of Co-Cr-Mo, Co-Cr-W and Co-Cr-Mo-W alloys. METHODS: Six Co-Cr based alloys were included in this study. All alloys are Co-Cr based alloys, classified in three different types according to their elemental composition. The first group has Mo as the third alloying element while the second one has W instead of Mo. The third one has both alloying elements. The groups are further divided by the manufacturing process (casting or Selective Laser Melting(SLM)). All groups were subjected to static immersion, open circuit potential, anodic scan, SEM/EDX analysis, static and cyclic tarnish testing according to ISO 10271 requirements. The ionic release was evaluated by inductively coupled plasma mass spectrometry and the results were statistically analyzed by two way ANOVA and Tukey test (a=0.05). RESULTS: No statistical differences were identified for Co-Cr-Mo alloy for all elements and their total ionic release between casting and SLM manufacturing processes, in contrast to significantly lower values for SLM groups for the other two groups. All groups tested demonstrated similar performance in OCP and AS testing while no gross elemental changes before and after AS were identified following EDX analysis. All alloys fulfilled the requirements of tarnish resistance CONCLUSIONS: The ionic release is dependent on alloy type and manufacturing process while all groups were found to fulfill the requirements of international standards for ionic release, corrosion and tarnish resistance and thus an acceptable clinical performance is anticipated.


Subject(s)
Chromium Alloys , Dental Casting Technique , Alloys , Chromium Alloys/chemistry , Corrosion , Dental Alloys/chemistry , Lasers , Materials Testing , Surface Properties
13.
Int J Oral Sci ; 14(1): 12, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181648

ABSTRACT

Various engine-driven NiTi endodontic files have been indispensable and efficient tools in cleaning and shaping of root canals for practitioners. In this review, we introduce the relative terms and conceptions of NiTi file, including crystal phase composition, the design of the cutting part, types of separation. This review also analysis the main improvement and evolution of different generations of engine-driven nickel-titanium instruments in the past 20 years in the geometric design, manufacturing surface treatment such as electropolishing, thermal treatment, metallurgy. And the variety of motion modes of NiTi files to improve resistance to torsional failure were also discussed. Continuous advancements by the designers, provide better balance between shaping efficiency and resistance to of NiTi systems. In clinical practice an appropriate system should be selected based on the anatomy of the root canal, instrument characteristics, and operators' experience.


Subject(s)
Nickel , Titanium , Dental Alloys/chemistry , Dental Instruments , Equipment Design , Nickel/chemistry , Root Canal Preparation , Titanium/chemistry
14.
Dent Mater J ; 41(2): 279-285, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34980767

ABSTRACT

This study assessed the effect of a primer containing 10-methacryloyloxydecyl-(2-thiohydantoin-4-yl)propionate (MDTHP) on the bonding of noble metal alloys to an acrylic resin. Three noble metal alloys were selected as adherends, and V-Primer containing 6-(4-vinylbenzyl-n-propyl)amino-1,3,5-triazine-2,4-dithione was used as a comparative control. The disk specimens of each noble metal alloy were wet-ground and divided into three conditions: specimens primed with MDTHP primer or V-Primer, and specimens without priming. An acrylic resin was bonded to each specimen, and the specimens were performed the shear bond test. The MDTHP primer showed higher shear bond strength than the V-Primer for all specimens. X-ray photoelectron spectroscopic analysis showed that MDTHP was adsorbed on the Au-Pt-Pd alloy surface even after acetone cleaning. MDTHP binds not only with Cu but also with Au and Ag, promoting the bond strength of noble metal alloys. The effectiveness of MDTHP on dental noble metal alloys was suggested.


Subject(s)
Dental Bonding , Methacrylates , Alloys , Dental Alloys/chemistry , Gold Alloys/chemistry , Materials Testing , Methacrylates/chemistry , Resin Cements/chemistry , Shear Strength , Surface Properties , Thiohydantoins
15.
Clin Oral Investig ; 26(3): 3299-3310, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34860307

ABSTRACT

OBJECTIVES: To compare the design, metallurgy, mechanical performance, and canal preparation of 5 rotary systems. MATERIAL AND METHODS: A total of 735 25-mm NiTi instruments (sizes 0.17[0.18]/.02v, 0.20/.04v, 0.20/.07v, 0.25/.08v, 0.30/.09v) from ProTaper Gold, ProTaper Universal, Premium Taper Gold, Go-Taper Flex, and U-File systems were compared regarding overall geometry and surface finishing (stereomicroscopy and scanning electron microscopy), nickel and titanium ratio (energy-dispersive spectroscopy), phase transformation temperatures (differential scanning calorimetry), mechanical performance (torsional and bending tests), and unprepared canal surface (micro-CT). One-way ANOVA and Mood's median tests were used for statistical comparisons with a significance level set at 5%. RESULTS: Stereomicroscopic analysis showed more spirals and high helical angles in the Premium Taper Gold system. All sets of instruments had symmetrical spirals, no radial lands, no major defects, and an almost equiatomic ratio between nickel and titanium elements, while differences were observed in their tips' geometry and surface finishing. At room temperature (20 °C), DSC test revealed martensitic characteristics for ProTaper Gold and Go-Taper Flex, and mixed austenite plus R-phase for the Premium Taper Gold, while ProTaper Universal and U-Files had full austenitic characteristics. Overall, larger instruments had higher torque resistance and bending load values than smaller ones, while a lack of consistency and mixed values were observed in the angle of rotation. The 0.25/.08v and 0.30/.09v instruments of ProTaper Universal and U-File had the highest maximum torques, the lowest angles of rotation, and the highest bending loads than other tested systems (P < .05). No significant difference was noted regarding the untouched root canal walls after preparation with the tested systems (P > .05). CONCLUSIONS: Although differences observed in the overall geometry and phase transformation temperatures have influenced the results of mechanical tests, unprepared canal surface areas were equivalent among systems. CLINICAL RELEVANCE: Root canal preparation systems with similar geometries might present different mechanical behaviors but equivalent shaping ability.


Subject(s)
Dental Alloys , Root Canal Preparation , Dental Alloys/chemistry , Equipment Design , Materials Testing , Metallurgy , Stress, Mechanical , Titanium/chemistry
16.
Dent Mater J ; 41(2): 266-272, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34866118

ABSTRACT

Ti-Zr alloys have been investigated as an alternative to commercially pure Ti (c.p.Ti). According to our previous studies on the mechanical properties of Ti-Zr alloys, a Zr proportion in the range of 30-50 mol% has competitive advantages over Ti-10Zr and c.p.Ti. The aim of this study is to evaluate the biological response to Ti-Zr alloys with different compositions and their surface characteristics. Alloy surfaces are modified by sandblasting and sulfuric acid etching. As a result, similar surface structures are observed for c.p.Ti, Ti-10Zr, and Ti-30Zr, whereas Ti-50Zr does not form a micro-rough structure by the same treatment process. No significant difference is found in the viability of cells on c.p.Ti, Ti-10Zr, and Ti-30Zr, whereas lower cell attachment levels are detected on Ti-50Zr. In summary, Ti-30Zr reliably forms a micro-rough structure, which provides one evidence for its application in a new dental implant material.


Subject(s)
Titanium , Zirconium , Alloys/chemistry , Biocompatible Materials/chemistry , Dental Alloys/chemistry , Materials Testing , Surface Properties , Titanium/chemistry , Zirconium/chemistry
17.
J Prosthet Dent ; 128(3): 522-528, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33597079

ABSTRACT

STATEMENT OF PROBLEM: The in vivo release of Pd from palladium alloys into the oral environment and sensitivity reactions by patients has been of concern. However, little information is available about the variation in elemental release from different palladium alloys. PURPOSE: The purpose of this in vitro study was to compare the elemental release into a corrosion-testing medium from a high-palladium alloy (Freedom Plus, 78Pd-8Cu-5Ga-6In-2Au) and a Pd-Ag alloy (Super Star, 60Pd-28Ag-6In-5Sn) under different conditions. MATERIAL AND METHODS: Alloys were cast into Ø12×1-mm-thick disks, subjected to simulated porcelain-firing heat treatment, polished, and ultrasonically cleaned in ethanol. Three specimens of each alloy were immersed for 700 hours in a solution for in vitro corrosion testing (ISO Standard 10271) that was maintained at 37 °C. Two solution volumes (125 mL and 250 mL) were used, and the solutions were subjected to either no agitation or agitation. Elemental compositions of the solutions were analyzed by using inductively coupled plasma-mass spectroscopy (ICP-MS). Concentrations of released elements from each alloy for the 2 solution volumes and agitation conditions were compared by using the restricted maximum likelihood estimation method with a 4-way repeated-measures ANOVA, the Satterwhite degrees of freedom method, a lognormal response distribution, and the covariance structure of compound symmetry. RESULTS: For the 4 combinations of solution volume and agitation conditions, the mean amount of palladium released was 3 orders of magnitude less for the Pd-Ag alloy (0.009 to 0.017 µg/cm2 of alloy surface) compared with the Pd-Cu-Ga alloy (17.9 to 28.7 µg/cm2). Larger mean amounts of Sn, Ga, Ag, and In (0.29 to 0.39, 0.57 to 0.83, 0.71 to 1.08, and 0.91 to 1.25 µg/cm2, respectively) compared with Pd were released from the Pd-Ag alloy. Smaller amounts of Cu, Ga, and In (4.8 to 9.9, 5.9 to 12.8, and 4.2 to 9.5 µg/cm2, respectively) compared with Pd were released from the Pd-Cu-Ga alloy. The Ru released was much lower for the Pd-Ag alloy (0.002 µg/cm2) than the Pd-Cu-Ga alloy (0.032 to 0.053 µg/cm2). Statistically significant differences (P<.001) in elemental release were found for the factors of alloy and element and the alloy×element interaction. Significant differences were found for the solution volume (P=.022), solution volume×element interaction (P=.022), and alloy×solution volume×element interaction (P=.004). No significant effect was found for agitation condition. CONCLUSIONS: The relative amounts of released elements from each alloy were not proportional to the relative amounts in the composition. The amounts of Pd and Ga released from the Pd-Cu-Ga alloy were consistent with the breakdown of a Pd2Ga microstructural phase and perhaps some dissolution of the palladium solid solution matrix. Precipitates, rather than the palladium solid solution matrix, appeared to undergo greater dissolution in the Pd-Ag alloy. The Pd-Ag alloy should have lower risk of adverse biological reactions than the Pd-Cu-Ga alloy.


Subject(s)
Gallium , Palladium , Alloys , Copper/chemistry , Corrosion , Dental Alloys/chemistry , Dental Porcelain , Ethanol , Gallium/chemistry , Gold Alloys/chemistry , Humans , Materials Testing , Palladium/chemistry
18.
Article in English | WPRIM (Western Pacific) | ID: wpr-929140

ABSTRACT

Various engine-driven NiTi endodontic files have been indispensable and efficient tools in cleaning and shaping of root canals for practitioners. In this review, we introduce the relative terms and conceptions of NiTi file, including crystal phase composition, the design of the cutting part, types of separation. This review also analysis the main improvement and evolution of different generations of engine-driven nickel-titanium instruments in the past 20 years in the geometric design, manufacturing surface treatment such as electropolishing, thermal treatment, metallurgy. And the variety of motion modes of NiTi files to improve resistance to torsional failure were also discussed. Continuous advancements by the designers, provide better balance between shaping efficiency and resistance to of NiTi systems. In clinical practice an appropriate system should be selected based on the anatomy of the root canal, instrument characteristics, and operators' experience.


Subject(s)
Dental Alloys/chemistry , Dental Instruments , Equipment Design , Nickel/chemistry , Root Canal Preparation , Titanium/chemistry
19.
PLoS One ; 16(10): e0258403, 2021.
Article in English | MEDLINE | ID: mdl-34649269

ABSTRACT

Due to the characteristics of high strength, high chemical activity and low heat conduction, titanium alloy materials are generally difficult to machine. As a typical titanium alloy with higher strength and lower heat conductivity, the machinability of titanium alloy TC21 is very poor and its cutting process is companied with larger cutting force and rapid tool wear. Straight-tooth milling tool is often used to cut the groove and side surface in the titanium alloy parts. And the milling method can be used to investigate the cutting mechanism because the cutting force has only two components and the better chip morphology is obtained. To investigate the straight-tooth milling process of TC21 alloy, a series of milling force experiments have been done. In addition, a 3D finite element model (FEM) for the straight-tooth milling process of TC21 alloy is presented to simulate the milling process. In the model, the constitutive material model, the failure model, the friction model and the heat transfer model were adopted. Through the simulation, chip formation, stress distribution, cutting force and milling temperature were obtained. The cutting force reaches its maximum when the spindle speed reaches about 13000 rpm, and then decreases as the speed continues to increase. The results confirmed that the similar "Salomon" phenomenon existed in the cutting process of TC21 alloy.


Subject(s)
Computer Simulation , Dental Alloys/chemistry , Dental Soldering/methods , Titanium/chemistry , Finite Element Analysis
20.
Biomed Mater ; 16(6)2021 09 28.
Article in English | MEDLINE | ID: mdl-34517359

ABSTRACT

The rationale behind the success of nickel free or with extremely low nickel austenitic high manganese and nitrogen stabilized stainless steels is adverse influences of nickel ion on human body. Replacement of nickel by nitrogen and manganese provides a stable microstructure and facilitates better biocompatibility in respect of the conventional 316L austenitic stainless steel (316L SS). In this investigation, biocompatibility of the high-manganese and nitrogen stabilized (Fe-18Cr-22Mn-0.65N) austenitic stainless steel was studied and found highly promising.In vitrocell culture and cell proliferation (MTT) assays were performed on this stainless steel and assessed in respect of the 316L SS. Both the steels exhibited similar cell growth behavior. Furthermore, an enhancement was observed in cell proliferation on the Fe-18Cr-22Mn-0.65N SS after surface modification by ultrasonic shot peening (USP). The mean percent proliferation of the MG-63 cells increased from ≈88% for Un-USP to 98% and 105% for USP 3-2 and USP 2-2 samples, respectively for 5 d of incubation. Interestingly,in vivoanimal study performed in rabbits for 3 and 6 weeks showed callus formation and sign of union without any allergic reaction.


Subject(s)
Biocompatible Materials , Dental Alloys , Prostheses and Implants , Stainless Steel , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Dental Alloys/chemistry , Dental Alloys/toxicity , Humans , Manganese/chemistry , Materials Testing , Nitrogen/chemistry , Stainless Steel/chemistry , Stainless Steel/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...